$$f(x) = \sec x + 3x - 2, -\frac{\pi}{2} < x < \frac{\pi}{2}$$

- (a) Show that there is a root of f(x) = 0 in the interval [0.2, 0.4]
- (b) Show that the equation f(x) = 0 can be written in the form

$$x = \frac{2}{3} - \frac{1}{3\cos x} \tag{1}$$

The solution of f(x) = 0 is α , where $\alpha = 0.3$ to 1 decimal place.

(c) Starting with $x_0 = 0.3$, use the iterative formula

$$x_{n+1} = \frac{2}{3} - \frac{1}{3\cos x_n}$$

to calculate the values of x_1, x_2 and x_3 , giving your answers to 4 decimal places.

(d) State the value of a correct to 3 decimal places.

a) f(0.2) = -0.38 (0 : by sign change f(0.4) = 0.29 70 rule & 6 [0.20.4]

b)
$$\frac{1}{\cos x} + 3x - 2 = 0$$
 =) $3x = 2 - \frac{1}{\cos x}$
 $\frac{1}{\cos x} + 3x - 2 = 0$ =) $3x = 2 - \frac{1}{\cos x}$

c)
$$x_0 = 0.3$$

 $x_1 = 0.3177$
 $x_2 = 0.3158$

 $f(x) = \frac{15}{3x+4} - \frac{2x}{x-1} + \frac{14}{(3x+4)(x-1)}, \quad x > 1$

2.

(2)

(3)

(1)

- (a) Express f(x) as a single fraction in its simplest form.
- (b) Hence, or otherwise, find f'(x), giving your answer as a single fraction in its simplest form
- form. (3)

a)
$$15(x-1)-2x(3x+4)+14$$

 $(3x+4)(x-1)$

$$= \frac{15 \times -15 - 6 \times^2 - 8 \times + 14}{(3 \times + 4)(x - 1)}$$

$$\frac{-6x^2+7x-1}{(3x+4)(x-1)}$$

 $= -(6x^2-7x+1)$

$$= -\frac{(6x-1)(x-1)}{(3x+4)(x-1)} = \frac{1-6x}{4+3x}$$

b)
$$\frac{d}{dx}(\frac{4}{7}) = \frac{\sqrt{u'-uv'}}{\sqrt{2}} \frac{u=1-6x}{u'=-6} \frac{v=4+3x}{v'=3}$$

$$f'(3c) = -6(4+3x) - 3(1-6xc) = -24 - 18x - 3 + 18x$$

$$(4+3x)^{2} = (4+3x)^{2}$$

3. (a) By writing $\csc x$ as $\frac{1}{\sin x}$, show that

$$\frac{d(\csc x)}{dx} = -\csc x \cot x \tag{3}$$

Given that $y = e^{3x} \csc 2x$, $0 < x < \frac{\pi}{2}$,

(b) find an expression for
$$\frac{dy}{dx}$$
. (3)

The curve with equation $y = e^{3x} \csc 2x$, $0 < x < \frac{\pi}{2}$, has a single turning point.

(c) Show that the x-coordinate of this turning point is at $x = \frac{1}{2} \arctan k$ where the value of the constant k should be found.

a)
$$\frac{d}{dx} (\operatorname{cose}(x) = \frac{d}{dx} (\operatorname{sin} x)^{-1}$$

= $-(\operatorname{Sin} x)^{-2} \times (\operatorname{cos} x)$

c) TP when
$$y'=0$$

$$e^{3x}(\csc 2x=0 \quad 3-2(\cot 2x=0)$$
No solutions
$$2\cot 2x=3$$

$$(\cot 2x=\frac{3}{2})$$

=> tan2x = 3

 A pot of coffee is delivered to a meeting room at 11am. At a time t minutes after 11am the temperature, θ°C, of the coffee in the pot is given by the equation

$$\theta = A + 60e^{-kt}$$

where A and k are positive constants

Given also that the temperature of the coffee at 11am is 85 °C and that 15 minutes later it is 58 °C,

(b) Show that
$$k = \frac{1}{15} \ln \left(\frac{20}{11} \right)$$
 (3)

(c) Find, to the nearest minute, the time at which the temperature of the coffee reaches 50 °C.

$$0=58$$
=> 33 = 60e^{-15k} => e^{-15k} = $\frac{11}{20}$
=> -15k = $\ln\left(\frac{11}{20}\right)$ => -15k= $\ln\left(\frac{20}{11}\right)^{-1}$

c)
$$50 = 25 + 60e^{-\frac{1}{15}\ln(\frac{20}{11})t}$$

 $\Rightarrow e^{-\frac{1}{15}\ln(\frac{20}{11})t} = \frac{5}{12} \Rightarrow -\frac{1}{15}\ln(\frac{20}{11})t = \ln(\frac{5}{12})$

Figure 1

The curve shown in Figure 1 has equation

$$x = 3\sin v + 3\cos v, \qquad -\frac{\pi}{4} < y < \frac{\pi}{4}$$

(a) Express the equation of the curve in the form

$$x = R \sin(y + \alpha)$$
, where R and α are constants, $R > 0$ and $0 = \alpha < \frac{\pi}{2}$
(3)

(b) Find the coordinates of the point on the curve where the value of $\frac{dy}{dx}$ is $\frac{1}{2}$.

Give your answers to 3 decimal places. (6)

$$\frac{R \sin \alpha}{R \cos \alpha} = \frac{3}{3} \quad \tan \alpha = 1 \quad \therefore \quad \alpha = \frac{\pi}{4}$$

$$R = \sqrt{18} = 3\sqrt{2}$$

$$\frac{dx}{dy} = 3\sqrt{2} \sin(y + \frac{\pi}{4})$$
 $= 2 \left(\frac{4\pi}{4} = \frac{1}{2}\right)$

$$\therefore \cos(y+\frac{\pi}{4}) = \frac{2}{3\sqrt{2}} \quad y+\frac{\pi}{4} = 1.0799 \therefore y=0.29S$$

$$x = 3\sqrt{2} \left(\sin(y+\frac{\pi}{4}) \right) \therefore x = 3.742$$

$$\left(3.742,0.29S \right)$$

6. Given that
$$a$$
 and b are constants and that $0 < a < b$,

- (a) on separate diagrams, sketch the graph with equation
 - (i) y = |2x + a|,

(ii)
$$y = |2x + a| - b$$
.

Show on each sketch the coordinates of each point at which the graph crosses or meets the axes.

(6)

$$|2x+a|-h=\frac{1}{3}x$$

giving any answers in terms of a and b.

$$2x+a=\frac{1}{3}x+b$$
 $-2x-a=\frac{1}{3}x+b$ $\frac{5}{3}x=b-a$ $-a-b=\frac{7}{3}x$

$$x = 3b - 3a$$

$$x = -\frac{3a-3b}{2}$$

$$\cos 3\theta \equiv 4\cos^3\theta - 3\cos\theta$$

(You may use the double angle formulae and the identity
$$\cos(A + B) \equiv \cos A \cos B - \sin A \sin B$$
)

(b) Hence solve the equation

$$2\cos 3\theta + \cos 2\theta + 1 = 0$$

giving answers in the interval $0 \le \theta \le \pi$. Solutions based entirely on graphical or numerical methods are not acceptable.

(ii) Given that $\theta = \arcsin x$ and that $0 < \theta < \frac{\pi}{2}$, show that

$$\cot \theta = \frac{\sqrt{(1-x^2)}}{x}, \quad 0 < x < 1$$

(4)

a) (0530 = (05(20+0) = (0520(050 - Sin20 Sin0)= $(2(05^20 - 1)(050 - 2Sin^20(050)$

$$= 2\cos^3\theta - \cos\theta - 2\cos\theta (1 - \cos^2\theta)$$

5)
$$8(\cos^3\theta - 6(\cos\theta + \cos 2\theta + 1 = 0)$$

 $8(\cos^3\theta - 6(\cos\theta + 2\cos^2\theta - 1 + 1 = 0)$
 $= 2(\cos\theta)(4(\cos^2\theta + \cos\theta - 3) = 0$

$$=2(050)(4(050-3)(600+1)=0$$

$$Sin^2\theta = x^2 \Rightarrow 1 - Sin^2\theta = 1 - x^2 \Rightarrow (\omega^2\theta = 1 - x^2)$$

 $\Rightarrow \cos\theta = \sqrt{1 - x^2}$

PMT

(5)

(4)

(4)

8. The function f is defined by
$$f\colon x\to 3-2e^{-x}, \qquad x\in\mathbb{R}$$

(a) Find the inverse function,
$$f^{-1}(x)$$
 and give its domain.

The equation f(t) = kc', where k is a positive constant, has exactly one real solution.

(b) Solve the equation $f^{-1}(x) = \ln x$.

a)
$$y=3-2e^{-x} \Rightarrow x=3-2e^{-y}$$

 $\Rightarrow 2e^{-y}=3-x \Rightarrow e^{-y}=\frac{3-x}{2}$
 $\Rightarrow -y=\ln\left|\frac{3-x}{2}\right| \Rightarrow y=\ln\left|\frac{2}{3-x}\right| \frac{2}{3-x}$

b)
$$\ln \left| \frac{2}{3-x} \right| = \ln x \Rightarrow \frac{2}{3-x} = x \Rightarrow 2 = 3x - x^2$$

 $x^2 - 3x + 2 = 0 \quad (x - 2)(x - 1) = 0$

=) oc=2, oc=1